Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Infect Dis ; 102: 247-253, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1059688

ABSTRACT

BACKGROUND: To evaluate and compare the effectiveness of four types of non-pharmaceutical interventions (NPIs) to contain the time-varying effective reproduction number (Rt) of coronavirus disease-2019 (COVID-19). METHODS: This study included 1,908,197 confirmed COVID-19 cases from 190 countries between 23 January and 13 April 2020. The implemented NPIs were categorised into four types: mandatory face mask in public, isolation or quarantine, social distancing and traffic restriction (referred to as mandatory mask, quarantine, distancing and traffic hereafter, respectively). RESULTS: The implementations of mandatory mask, quarantine, distancing and traffic were associated with changes (95% confidence interval, CI) of -15.14% (from -21.79% to -7.93%), -11.40% (from -13.66% to -9.07%), -42.94% (from -44.24% to -41.60%) and -9.26% (from -11.46% to -7.01%) in the Rt of COVID-19 when compared with those without the implementation of the corresponding measures. Distancing and the simultaneous implementation of two or more types of NPIs seemed to be associated with a greater decrease in the Rt of COVID-19. CONCLUSION: Our study indicates that NPIs can significantly contain the COVID-19 pandemic. Distancing and the simultaneous implementation of two or more NPIs should be the strategic priorities for containing COVID-19.


Subject(s)
COVID-19/prevention & control , SARS-CoV-2 , Humans , Masks , Physical Distancing , Quarantine , Time Factors , Travel
2.
Sci Total Environ ; 757: 143783, 2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-939257

ABSTRACT

Novel corona virus disease 2019 (COVID-19), which first emerged in December 2019, has become a pandemic. This study aimed to investigate the associations between meteorological factors and COVID-19 incidence and mortality worldwide. This study included 1,908,197 confirmed cases of and 119,257 deaths from COVID-19 from 190 countries between 23 January and 13 April, 2020. We used a distributed lag non-linear model with city-/country-level random intercept to investigate the associations between COVID19 incidence and daily temperature, relative humidity, and wind speed. A series of confounders were considered in the analysis including demographics, socioeconomics, geographic locations, and political strategies. Sensitivity analyses were performed to examine the robustness of the associations. The COVID-19 incidence showed a stronger association with temperature than with relative humidity or wind speed. An inverse association was identified between the COVID-19 incidence and temperature. The corresponding 14-day cumulative relative risk was 1.28 [95% confidence interval (CI), 1.20-1.36] at 5 °C, and 0.75 (95% CI, 0.65-0.86) at 22 °C with reference to the risk at 11 °C. An inverse J-shaped association was observed between relative humidity and the COVID-19 incidence, with the highest risk at 72%. A higher wind speed was associated with a generally lower incidence of COVID-19, although the associations were weak. Sensitivity analyses generally yielded similar results. The COVID-19 incidence decreased with the increase of temperature. Our study suggests that the spread of COVID-19 may slow during summer but may increase during winter.


Subject(s)
COVID-19 , China , Cities , Humans , Humidity , Incidence , Meteorological Concepts , SARS-CoV-2 , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL